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Abstract—This paper is composed of two parts. The first part presents a short study on the fundamental
Green’s functions associated with heat conduction in anisotropic and isotropic media. Then by means of
these functions and Green’s formula, differential equations are transformed into integral equations. In
the second part, these integral equations are solved for three specific problems in steady and transient
states. The results are then compared with those of exact solutions and are found in good agreement,
except for very small values of time. Effects of discontinuities of surface conditions and of boundaries are
discussed in great detail. Anisotropic effects and the facility of the method are found to depend mostly on
the determinant of conductivity coefficients which characterizes the type of differential equations.

NOMENCLATURE

c* specific heat;

h* heat transfer coefficient;

h, h*L*/k%, dimensionless heat trans-
fer coefficient;

k¥ conductivity coefficients;

kg, reference conductivity;

ku’ kj}/kg, dimensionless conductivity
tensor;

kY, dimensionless resistivity tensor;

I¥, reference length;

N, number of spatial coordinates;

n*, outward drawn normal to surface;

n, n*/[*;

0*, rate of heat generation per unit
volume;

0, QXK T

q*, heat flux;

q, q*I*/ky T§;

T*, temperature;

TF, reference temperature:

1, T*/T,

t*, time:

+ This study was supported in part by National Science
Foundation Grant No. GK-23688.

1905

t, t*k¥/p*c* I
X* y* z* rectangular coordinates;

x=x*LI¥ y=y*L* z =z*%L*,

p*, density:

[, determinant, or matrix.
Subscripts

s, pertaining to surface;

0, reference quantities.
Superscript

*, pertaining to physical quantities.

INTRODUCTION

ANISOTROPIC media can occur in nature, such
as woods, crystals and sedimentary rocks, and
can also be produced artificially, such as lami-
nated and fiber-reinforced construction and
electronic materials, cables, cylinders, and tubes.
Because of the rapid increase of their industrial
use in recent years, the understanding of heat
conduction in this type of material is of great
importance. However, experimentally, it is diffi-
cult to make accurate measurements, and ana-
lytically, it is difficult to solve the differential
equations.
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This paper is concerned with the use of
fundamental Green’s functions* for the solution
of problems of heat conduction in anisotropic
and isotropic media. This method is well known
in classical potential theory [ {-3] and in theories
of integral and partial differential equations
[4-6] for investigating the existence and unique-
ness of the solution of differential equations of
parabolic and elliptic types.

The practical use of the classical, fundamental
Green’s functions together with the Green's
second formula for the numerical solution of
Laplace equation was probably first reported
by Jawson [7]. By an approximate numerical
technique, good results were reported by Sym
[8] for a number of two-dimensional problems.
Most recently, Rizzo and Shippy [9] solved the
problem of heat conduction in an infinite cylinder
of an isotropic medium by first applying the
Laplace transformation and using the above
method to solve the auxiliary equation. The
numerical results were then inverted to yield
the numerical solution of the original heat
equation. Calculated data, however, are very
limited. Since a circular contour is uniformly
smooth, it is difficult to examine the accuracy
of the method of solution. Shaw [10] investi-
gated the heat conduction in a circular sector of
an isotropic medium by the direct use of the
classical fundamental Green’s function but did
not mention how good is the method for small
values of time.

In general, it is difficult to obtain analytical
solutions of problems of heat conduction in
anisotropic media. Reported results have been,
therefore, restricted to orthotropic cases, such
as Giedt and Hornbaker [11] Touryan [12] and
Chao [13]. Padovan [14] considered the heat
conduction in a thin cylindrical shell of aniso-
tropic media through the solution of an approxi-
mately formulated differential equation. One
way of dealing with the anisotropic case is to

* These functions are also called fundamental solutions,
principal solutions, source functions, singular functions, or
Green'’s functions in an infinite domain in texts of mathe-
matics.
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transform the differential equation into the
canonical form by changing the spatial co-
ordinates. However, after the transformation,
the domain will be deformed and rotated and
surface conditions will become, in gencrdl more
complicated than original ones.

Since the purpose of using fundamental
Green's functions for the solution of heat con-
duction problems in the present study is dif-
ferent from that in theory of integral equations.
a short study on their basic properties is
given in the beginning of this paper. By means
of these properties and the Green’s second
formula, the heat conduction problems are then
formulated in integral equations. These integral
equations are particularly suitable for inverse
problems which will be defined later. Toillustrate
the method and to investigate singularity and
anisotropic effects, three systems with and with-
out corners and with and without continuous
boundary conditions are investigated in detail:
a square prism, a circular cylinder and a hollow
eccentric cylinder.

FUNDAMENTAL EQUATIONS AND
ASSUMPTIONS

Consider an anisotropic medium in domain
Q bounded by surface S which may consist of
n segments each being sufficiently smooth (in
the sense of Liapunov [2], pp. 1-6). Physical and
thermal properties of the medium are assumed
constant. The heat conduction in the medium
can then be formulated in general orthogonal
curvilinear coordinates as follows:

p¥c* a@f: = 3 h [5 (h,hyq7)
+ %(klhjqj) + ef‘gj—a-(hlhzq§)] +0* ()
in Q for t > 0, where
: ket oT*
P )i @

j=1

are the components of heat flux, ¢, the general
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curvilinear orthogonal coordinates, h; the scale
factors, and other notations are defined in the
Nomenclature. The determinant of the con-
ductivity coefficients, Ikij| is assumed positive
and definite, so that (1) is of the parabolic type
and becomes elliptic type in steady state. In
rectangular coordinates, (1) becomes especially
simple and for this reason we shall use this
coordinate system in the following presentation,
unless stated otherwise. Using the dimensionless
quantities defined in the Nomenclature, (1)
takes the form,

N

oT T
@ 2 ki g, T2

ij=1

3

in Q for t > 0, where x_ denotes the coordinates
of any point in @, and N the number of spatial
dimensions. The boundary conditions on T
may be written in the form

T = F(xp)

oT
it + hix, )T = f(x,t) onS,fort>0

inQ,fort =0 4)

)

where

) 0
p Z kijcos (n, xi)a; 6)

x, represents points on S, h and f are defined
and continuous functions of x_ and ¢, cos (n, x,)
are the direction cosines of the normal n to
surface S, and the initial condition F(xp) is a
uniformly continuous function, or satisfying
Holder condition (see [3], pp. 7-9). In (5),
either k; or h may be zero so that surface
conditions of Dirichlet and Neumann types
are included. The functions h and f may also
depend on T.
For steady state, (3) takes the form

N

Yk

ij=1

0T
i 0x,0x;

= Q(x,). )
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With the boundary condition remains in the
same form as (5) except that h and f are now
independent of ¢.

It is to be noted from (1) and (2) that the prob-
lem of heat conduction in anisotropic media is
three-dimensional, since, even though T may
depend only on two spatial coordinates, the
heat flux may be in three directions.

In the above formulation, the boundary con-
ditions are assumed known while the tem-
perature distributions in Q for t > 0 are sought.
This class of problems may be called the direct
problem. Inversely, if the temperature history in
Q, but not on S, is known, while the rate of heat
generation, initial temperature, surface tem-
peratures and surface heat fluxes are to be found,
then the problem may be referred to as an
inverse problem. It is known that an inverse
problem is more difficult to solve than the direct
one [15, 16].

FUNDAMENTAL GREEN’S FUNCTIONS

Let Gy(x, t|x,,t') and Gy(x;|x] denote the
fundamental Green’s functions associated, re-
spectively, with (3) and (7) for heat conduction
in anisotropic media; and g,(x, t|x:., t) and
gx(x;|x) those associated with heat conduction
in isotropic media. To unify the presentation of
these functions and to have them exhibit the

same characters, we define
1

X, X, 1) = ———————— g A0
gN(xl. |x1 ) k[4TL’(t _ t/)]N/Z € (8)
where
N
rl= 1 (x, — x))? 9)
k i i
i=1
and
(3c|’c’)—i (xl ) = 11 10
9s\Xi | X)) = s 9o\ X X = — 5 inr (10)
where
N
=3 (x, — x)% (11)
i=1



1908

The r’s defined in (9) and (11) may be called
geodesic distances. It is easy to see that g.(x,,
t|x,, t') becomes singular at x, = x; and t = '
and g(x,]x)) at x; = x]. These points are called
poles. It can be readily verified by direct
substitution that g,(x,, t|x;, t') satisfies

N
6291‘1 agN ' '
kZW“F{-O fOIxi‘#xi,t#t

i=1

gyx,t|x, ' =1 =0 (12)
and g(x,| x;
N
52
2 e 5“ =0 for x, # x. (13)

i= 1
Similarly, G(x,.t|x,t) and G(x,]x) are to

satisfy, respectlvely,
N

Z "

ij=1
Gylx,t|x, ¢ =1)=0

62GN _EE;.N
Yoxdx, Ot

=0 forx, # x,t#1t

(14)
and
N
2 K
i,j=1

These can be achieved, if we write, in view of (8)
and (10)

52
Gy =0 forx, # X

U axdx; (15

e
[4n(t — )]V

where |k¥| is the inverse matrix to the matrix
|k,;| and the geodesic distance R is defined by

GN(xp tl x;, t) = —R2j4(1~1") (16)

R? = . % ki (x; — x))(x; — x)) an

and o )
G,lx,|x) = '—?’-g, (18)
G,(x,|x) = — LM Ul InR. (19)
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We now examine some basic properties of the
fundamental Green’s functions which will be
used for isolating poles. For x, — x, it can be
easily shown by taking the limit that

1 ~
lim [gy(x,t]x,t)dt = gy(x,]x) (20}
XX O
t
lim [ Gylx,t]x, £)dt = Gylx;|x). (21

xi—x; 0
Let ¢ be the radius of a small spherical surface
for N = 3, or of a small circle for N = 2, enclos-
ing the point x, in domain @, and let S, be the
small surface. It can be easily shown that, for
either steady or unsteady state,
lim | G,dS, =1lim {g,dS, =0 (22)

£—=0 s¢ £0 sg

and that

limj{q — G (x,|x)dS, =
&0
Se

—llmja Jx [x)ds, =—1
g0 0
1

Se
lim | d¢ —é— X, t)x;, £y dS,
61:*
Ss

=0
0

g0

ﬂ@jﬁj%%@ﬂ%ﬁﬁf—Lm)
0

S

If the pole arises as x, — x/, we may isolate it
by drawing a small hemispherical surface for
N =3 or a semi-circle for N = 2 of radius ¢
and center x_, and we can obtain

. é ,
hir;J\é‘n._*- GN(Xs‘xs)dSa
S

&

= limfaa gulx,|x))dS,

£—+0
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—6—+ G (x,, t|x,t)dS,

£)dS,= —1. (24)

1
7

INTEGRAL EQUATIONS

We now wish to transform the differential
equations (3) and (7) into integral equations by
means of the fundamental Green’s functions
and Green’s second formula.

Consider first the steady case. If L denotes
the linear differential operator of (7) and L
is its adjoint of (15), both.taken with respect
to Xx;

LIT()] = = (), L[Gylx]x)] =0

for x, #x; (25)

then Green’s second formula takes the form

J{GNL[T] — TL[G,]} dQ

- [G,V<x,.|x;> .

S

- T(x)

a - N(xi|x;)] ds(x).  (26)

Substituting (25) into (26), isolating the pole at
x, = x; by a small sphere for N = 3, or a small
circle for N = 2, of radius ¢ and taking the
limit ¢ — 0, we obtain

T(x;) = JQ(XE)
@
0
+j[GN(xi[x 8 — T(x)

S

Gy(x,|x) dQ(x)

8
- T 5 GN(inx;)] dsx).  (27)
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For the unsteady state, we can obtain by the
same way

T(x,t) = fdt’ f Q(x,, ) G (x,» 1] X, ') dR(x))
0 Q

+ J F(x) G(x,,

Q

( ’ ! / a ’ !
+ Jdt J[GN(xi, t]x,, 1)z T )
0 S

5+G s Xt ]dS() (28)
on

x;, 0) dQ(x7)

-~ T(x,t)

s?

For isotropic media, T(x) and T(x,t) are
given by equations in the same forms of (27) and
(28) with G, replaced by g,, and d/0n™ by d/0n.

From (27) and (28), it is seen that, if the
boundary values, (0T/0n™), and T, are known,
then the temperature distribution can be ob-
tained by simply numerical integration. To
evaluate these boundary values, however, we
cannot set x; = x_in these equations, because
of the presence of poles at x, = x. Evaluating
the singularity at x = x| and using (24), we
obtain

IT(x) J‘Q x}) G (x| x)) dQ(x)
2

0
+ || Gulxilx) 55 Tx)

nt—
1

GN(xs|x;):| ds(x)) (29)

ITx, 1) = Idt’ J Q(x, t') G \(x, t]x), t') dQAx))
2

0
|
Q

F(x}) G (x, t|x], 0) dQ(x))
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t
+ f dr f [GN(xs, t
0 N

3,
on”

The boundary-value equations (29) for steady
state or (30) for unsteady state together with the
prescribed surface conditions (5) are sufficient
to determine the unknown boundary values,
(0T/on™), and (T),.

Note that the volume integrals in (29) and
(30) are known functions, and that, if the problem
is three-dimensional in space, the boundary
value equations are two-dimensional. Thus,
the numerical solution of the boundary value
equations requires less effort than the numerical
solution of the original differential equation.

We now consider an inverse problem in
domain Q bounded by a surface of n segments.
If temperatures at any (n + 2) points in Q are
known, and we wish to find the temperature
and heat flux at each surface segment, the rate
of heat generation and the initial temperature,
which are known only as uniformly distributed,
then we have (n + 2) equations of (28) and n
equations of (30). These (2n + 2) equations are
sufficient to determine the (2n + 2) unknowns.
Thus, the integral-equation method is also a
powerful one for the solution of inverse problems
in anisotropic as well as in isotropic media. For
instance, the inverse problems that were in-
vestigated in [16] can be readily written down
in integral equations in the forms of (28) and
(30) with G, replaced by g,.

il
T., /~ ’
on?t (e 1)

X, t)

— T(X, 1) = Gy(x,, 1]x., t’)] dS(x).  (30)

NUMERICAL SOLUTIONS OF SOME
TWO-DIMENSIONAL PROBLEMS

As a stringent test of the method of solution,
we apply (27)(30) to three specific problems
in regular domains: (I) a long square prism, (II)
a long circular cylinder and (III) a hollow
eccentric cylinder. We assume that the surface
condition is independent of the length co-
ordinate, so that the temperature will depend
only on two spatial variables. To facilitate the
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examination of the accuracy of the numerical
results, we consider only surface conditions of
Dirichlet type for which analytical solutions of
problem (II) can be easily found. When an
exact solution cannot be readily obtained, we
shall specialize the integral equations to the
isotropic case and compare the numerical
results with those of the exact solution. For
simplicity, we assume that heat generation is
absent and that the medium is homogeneous
in rectangular coordinates. It is to be noted that
an anisotropic medium which is homogeneous
in one coordinate system becomes hetero-
geneous in other coordinate systems. Suppose
that the boundary conditions are, for the steady

state,
T=f onS (3N
and, for the transient state,
T=f onSfort>0

(32)

T=0 in Qfort =0.

In view of the properties of fundamental
Green’s functions as indicated earlier, we may
assume that (9T/0n"), and (T) change very
slowly in comparison with (G), and (@G/on™),,
respectively. In the numerical solution of the
boundary value equations, we divide the contour
S into N elements. Let i = 1,2... N denote the
primary nodal points and j=1,2...N the
secondary nodal points. Then the boundary
value equations (29) for steady problems can
be written in the form

N

orT
£ SJ

j=1
N

-2 Z T(x,;, y,) B;; (33)
j=1
where
Ay = [ Gy lxo ) ast,y) (34
S
0 y Y 3
Bij = J‘ 5"—*' G(xsi’ ysilxsys) dS(xs’ ys) ( 5)

Asj
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and G is given by (19). Using matrix notation,
(33) can be written as

(1] + 2|B)|T| — 2|4||Tn*| =0  (36)

where |T| is the column matrix of elements
T(x,; y;): |T,. | that of elements 0T(x,, y,)/on™ ;
|A| and |B| are square matrices of elements
A,; and B, respectively; and [1] is the identity
matrix.

The boundary-value equation (30) can be
similarly written in algebraic equations. To
save computer memory, the integration with
respect to time may be performed stepwise, i.c.
T(x, y,»t,) is evaluated from T(x, Vg t,_ )
where m = 1, 2, 3, ... denote the nodal points
of t.

N

oT ,
T(Xy Yo t) = 2 Z (5,,7) ‘Aij
: si

j=1
N

~2 Z (T),;B; + 2F,

j=1

(37)

where
Fi = ?‘; T(X’, y” tm— l) G(xsi’ ysi’ tmlx,’ y/’ tm— 1)

x dQ(x',y)  (38)

tm
A;j tmj dr’ s G(xsi’ ysi’ tmlx;’ y;’ t/)

-1 Asj
x dS(,y)  (39)

tm
7/ ’ a 4 ; '
Bij = dr 6’1—+ G(xsi’ ysi’ tm|xs’ ys’ t)
tm- 1 Asj

x dS(x,, )

and G is given by (16) with N = 2. Note that
T(x,y,t,_,) =0 for m=1. The integration
with respect to time for 4;; and B;; can be
performed so that

[ |kij|é Rsz ’ 7
A= | B ag = 95y (0

Asj
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, _ [P [ D,
Bi="0 R?
Asj
R2
S B— Y S 41
xexp[ 4(tm_tm_1)] ) @)

where Ei(z) is the exponential integral and
R = k''(x, — x!)* + 2k'*(x, — X))
X (v — V) + k20, — y)?
D, = cos(n, x)){k, [k'(x; — x)
+ k2 (p, — y] + k[kPA(x; — x)
K325, — YT} + cos (n )y
x [k xy = x) + K2y — y))]
+ ko [k (x,, — X)) + K*2(y; — ¥y}

Using matrix notation, (37) can be written in
the same form as (36)

(1] + 2|B)D|T| - 2|4\ T,-| = 2|F|. (42)

The matrix (36) for the steady problem, as
well as the matrix (42) for the transient problem,
are solved together with the surface conditions:

T0,y)=T(,y) = T(x,0) =0

T(x,1) = sinznx @)
for the square contour, and

o= {00 0505
or

T(1,0) =a +bcos80 < 8 < 2n 45)

for the circular contour, where a and b are
constants. For the hollow cylinder, uniform
and constant temperatures are assumed at the
inner and outer surfaces. For the transient
state, the above surface conditions are assumed
to hold for t > 0.

In Figs. 1-3 some calculated results of tem-
perature distributions in steady and transient
states are shown for the three systems indicated
above with surface-condition (44) for the circular
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———~— r=o0 (I1sotropic)

t=m
—— =004
- —— +=008
Q0 I i i . | 1 . R 72004
00 02 04 08 08 1-0 T r=016
/= oo
X Isotropic

FiG. 1. Temperature distributions in a square, anisotropic ~ Fig. 2. Temperature distributions in a circular, anisotropic
medium. k,, = 1.k, =05.k,, = 1-2, medium, k,, = 1,k,, = 05, k,, = 1-2.

T T T T | T

kll klZ k22
— o 05 08
——=— 10 03 08
-——~ 10 01 08

0 00 10(isotropic)

Fi6. 3. Isotherms in anisotropic and isotropic media for various values of k ,.
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Fi1G. 4. Heat flux vectors in a square, anisotropic medium in
steady state, k, = 1,k,, =05,k,, = 1'2.

cylinder. Distributions of steady heat flux
vectors projected in xy-plane are shown in
Figs. 4 and 5. Distributions of heat fluxes
projected to the normal of contours are shown
in Figs. 6 and 7. Some temperature distributions
along a closed path parallel with the square
contour are depicted in Fig. 8. The effects of
anisotropy to temperature distributions and
heat fluxes are clearly shown in these figures.
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|sotropic case

—_—

- k=10, k=05, ky,=l-2

FiG. 5. Heat flux vectors in a circular, anisotropic medium
in steady state.

The most significant quantity to characterize
the anisotropy is the determinant of the con-
ductivity coefficients, ie. |k.| =k, k,, — k,.
The smaller the value of |k, |, the more asym-
metric are the temperature ﬁelds and heat flux

4-0

qfl

00 | ST T

Normal heat flux at boundary,

-2.0b
Kk =10, kpp =05, k=12
----- # = oo (isotropic)
-4gf —— f=0
—.— #:0.04
| —.— r=008
-60L.1 ] I L [ ! t I L 1 t i L ] 1 L

x,{y=0) ¥, (x=1)

]
01 0305 07 09 Ol 03 05 O7 09 09 07 05030109 07 05 030!

x, (y=1) ¥, (x20)

FI1G. 6. Normal heat flux at square boundary.
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20 T T T T T

k=10, kip= 05, kpp= -2

qﬂ

Normal heat flux at boundary,

ah

3m/2

~m/2 0 /2

F1G. 7. Normal heat flux at circular boundary.

- vectors. Since the criterion |k, ;| > O determines
K =10, Kig 205, kpp=1i2 the type of the differential equations, parabolic
© ——== t=oolisotropic) . o .

for transient problems and elliptic for the
steady problems, therefore, the smaller the value
of ’ku , the more difficult is the numerical calcu-
lation. From Fig. 4, it is clearly seen that heat
flows out from the surface y = 1 near edge (1, 1).
For the circular domain, the outflow of heat
occurs also near the point (1,n) although it

— f =
I —-— =006
—= #=0-08

o]

-
cannot be seen clearly from Fig. 5. Were the
medium isotropic, inflow of heat would take

07 —»~~Tm5— place in these locations.

L~ \ A | ﬁs Calculated temperature distributions in steady
| ¥ / . Z.I 2.0 I.S I'B I:I I.G . . . . N
ool \ 1] e 5 state for the circular domain of anisotropic
. \ y / / = Square e T media with surface condition (45) is found
3 \\ : / 25+ Medium e o7 identical with that of isotropic media for all
i . \/ e o values of k,,, k,,, k,,, a and b. This surprising

\ ; / 28 ol result will be discussed later.

\/ i 23456878 [g08
V f DISCUSSIONS

R T a———) We now wish to examine the accuracy of the
Nodal points calculated results as shown in Figs. 1-8 for

Fi1G. 8. Temperature distribution along a closed path. anisotropic media. Naturally, the simplest way
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is to compare the numerical results with those
obtained by analytical means. Although it
is not difficult to obtain analytical solutions
of some of these problems, it is sufficient for the
present purpose to consider only one case
whose analytical solution can be readily written
down.

For heat conduction in the circular cylinder,
we consider the steady problem with surface
condition (45). It is readily seen that the expres-
sion

T(r,0) =a + brcos@ (46)

where (r, 0) are the polar coordinates, satisfies
the boundary condition (45) and the differential
equations expressed in rectangular coordinates
for anisotropic as well as isotropic media.
Since our numeral results from the integral
equations have shown this identity, we can,
therefore, conclude that the method of our
numerical solution yields excellent results, for
the circular cylinder with the continuous surface
condition (45).

Table 1. Comparison between exact (upper figures) and

numerical (lower figures) solutions for temperature dis-

tribution in a circular, isotropic medium with boundary
condition (47)

1T~

|__.9l31 .9/38.9)

| -930-937.960

| .Bi48 .8/55 8|81 928

i .8[a44 8563 .8[79 926

L .7/48.754 7/78 829 .9

i 7143 750 776 B[28 923
. 6133 635 651 .6/89.7/86
I~—6[26 631 648 688 .787
I 5/00.5/12 518 .531 .57l
[~ 500 510 516 530 .567
| 381 .374.3/56 315 216 }
[ -3[74 3]69 3[52 312 213
| .2l63.2/54.2]27 1|73 0

[ -2[p8.2[50.224 172 0

L .1160 .1|50 1123 o737

| I[p6 147 121 ofree
|__.0o7|22 .0l641 .0j402

I 07|04 .0l628 .03

l\
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To test results of other cases, we specialize
(36) and (42) to those of isotropic media and
results thus calculated are plotted in Figs. 1-8.
In steady state, good agreement is obtained for
the circular cylinder with surface condition
(44) or (45). However, when the discontinuous
surface condition

1 0<fB<n

0 n<fl<2n (47)

T(1,0) = {

is used, appreciable but tolerable errors are
found near the points of discontinuity (i.e.
0 = 0, n), as can be seen from Table 1. For the
square prism, a maximum error of 0-3 per cent
is found near the corners as shown in Table 2.
In transient state, for large times, a maximum
error of about 0-3 per cent are also found around
the points (1, 0)and (1, =) for the circular contour
with surface condition (47) and around the four
corners of the square contour. For ¢ = 0005
error as large as 10 per cent in the temperature
field are found for both the square and circular
contours. The error decreases to about 1 per cent
for t = 0-02 and becomes negligible for t > 0-05.
Unfortunately, the large errors for small ¢
cannot be reduced by taking smaller At, as was
discussed in [15,16]. An improved version of
(42) was suggested in [16].

To understand the errors near the corners
of the square contour and near the discontinuous
point of the surface condition (47) on the circular
contour, we have to go back to the theory of
integral equations. When surface S is composed
of a number of smooth segments, the corners
are singular points. A discontinuity point of
surface condition is, in effect, also a singular
point. In obtaining the integral equations, we
have tacitly excluded corners and assumed that
the integral equation is valid for the truncated
region. This is permissible in domain Q only.
For a corner, the term § in (24) is to be changed
to 1 — w/4n where w is the solid angle of the
corner, but this improves the accuracy only
slightly. To reduce the error caused by edges
of the contour, we may use “incomplete”
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Green’s functions, rather than the fundamental
Green’s function. When this method is used,
the error for small ¢ can be reduced to toler-
able range. An incomplete Green’s function
is defined as the Green’s function which satisfies
a number of the boundary conditions but not
all. To show this, we consider again the square
prism and, for simplicity, we consider the
isotropic case. Let g,(x, y|x',y) be the in-
complete Green’s function satisfying three homo-
geneous surface conditions at x = 0, y = 0 and
x = 1, and g,(x, y|x', y’) that satisfying only one
homogeneous surface condition at x = 0. By
the image method, g, and g, can be readily
written down as follows:

Y. P. CHANG, C. S. KANG and DAVID J. CHEN

Calculated results by using g, and g, are
shown in Table 2. It is seen that results calculated
by using g, are in good agreement with those of
exact solution, except near the two corners
(0,1) and (1,1) where the maximum error is
about 03 per cent. Calculated results by using
g, is better than those obtained by using
g(x, y|x', y') but worse than those obtained by
using g,.

The intolerable errors for very small ¢ are
evidently due to the approximate numerical
technique. The smaller the time, the larger is
the temperature slope near discontinuous points
as shown in Fig. 8. Consequently, the approxima-
tion of (T), and (0T/dn™), by constant values

mmﬂﬂw=m&ﬂﬂﬂ+z4
T

L [+ + =y [ - X + 0 + Y]
(x+ X7+ +y)

[(x + x" = 2n)% + (v — ¥)2] [(x + X' + 2n)* + (y — )]

+ 4n n{[(x +x =20 + (v + Y] [x + X+ 20 + (y + )]
1

T —x =2 + 0+ 5P [ = X + 20 + (y + y’ﬂ} 48)
[x—x =20 + (v — yP][(x = ¥ + 20 + (v = )]

1

gz(xa y’x/’ y/) =

x=xP+y—-y)r

47 n(x + XV 4+ (y = y)*

(49)

Table 2. Comparison between exact and numerical solutions for temperature distribution in a square, isotropic medium: Ist row,

exact; 2nd row, using g, ; 3rd row, using g,; 4th row, using g

0-15 025 0-35 0-45
Temperature gradients
0-4933 1-432 2230 2-810 3115
10 04948 1436 2:237 2-818 3124
04948 1436 2:237 2-818 3124
0-4125 1-441 2-236 2818 3124
Temperature distribution
01336  0-3877 06039 07610 0-8435
095 01340 03879 06041 07612 0-8438
01340  0-3879 06041 07612 0-8438
01332 03878 06041 07613 0-8439
00974  0-2826 04401  0-5546 0-6147
0-85 00973 02824 04400 05543 0-6144
00973 02824 (04399  0-5543 06144
0-2824

0-5543

0-55 0-65 075 0-85 095

3115 2:810 2:230 1-432 0-4933
3124 2:818 2:237 1-436 0-4948
3-124 2-818 2235 1-441 0-4111
3124 2-818 2:236 1-441 0-4125
0-8435 0-7610 0-6039 0-3877 0-1336
0-8438 0-7612 0-6041 0-3879 0-1340
0-8438 07612 0-6041 0-3878 0-1332
0-8439 0-7613 0-6041 0-3878 0-1332
06147 0-5546 0-4401 0-2826 0-0974
0-6144 0-5543 0-4400 02824 0-0973
06144 0-5543 0-4399 0-2824 0-0968

0-5543 0-2824

06145 0-0968

0-0968 06145
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over small intervals of time and of length is no
longer a valid simplification. To reduce the error
caused by the approximate numerical technique,
we may use the integral equation for the
potential of a double layer [5]. For this purpose,
we may consider again the isotropic case.
Let u(x,, y,t) denote the potential density on
the contour S which is defined for ¢t > 0 and is
zero for t = 0 and which satisfies the Holder
condition. Then we can seek the solution of
T(x, y, t) in the form

t

1 /’ /’ t/

T(x, y,t) = Zﬁj‘dzl W_SL)
0

(t -1ty

2

x exp( 4(t’ )> dS(,y)  (50)

where u is given by
t

HX, Vo £)

x’ N —_—— —
Wexeyo =1 j _[(t—-t')
[} S

2

X exp( prrg. t)> ds(x,, y). (51)

Equation (51) can be solved by the method of
iteration with the aid of the spline fit approxima-
tion. The main drawback of using potentials of
a double or a single layer is that it will become
more complicated in dealing with multiply
connected, internally or externally bounded,
regions, while (27)«30) apply for any region.
In view of the fact that the calculation for very
small ¢ is also difficult in the numerical solution
of the original differential equation, we may,
therefore, accept the present numerical method
with the aid of the scheme suggested in [16]
as a useful method for the solution of direct
as well as inverse problems.

CONCLUDING REMARKS

The use of fundamental Green’s functions
together with the second Green’s formula is a
useful method for the solution of heat conduc-
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tion problems in anisotropic media. In order to
maintain reasonable accuracy, the following
conditions are to be observed:

1. The bounding surface is, at least, piece-
wise smooth without acute corners.

2. The surface condition does not have
abrupt change over each surface segment.

3. The determinant of conductivity coef-
ficients is not too small.

4. Whenever the incomplete Green’s function
can be constructed, it should be used
instead of the fundamental Green’s func-
tion.

There are many advantages of using the
fundamental Green’s function G. The numerical
solution of integral equations requires less
effort than that of the differential equation.
This is particularly true for irregular domains
with complicated boundary conditions. Direct
and inverse problems can be treated by the same
way. Since G(x,,t|x,t) and Gy(x,|x]) can be
interpreted as instantaneous and steady heat
sources in anisotropic media, solutions of a
great many anisotropic problems, which would
be very difficult to obtain by other methods,
can be readily written down in the form of
definite integrals which can be expressed in
terms .of tabulated functions for many cases of
practical importance [17].
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L’'UTILISATION DES FONCTIONS FONDAMENTALES DE GREEN POUR LA SOLUTION
DE PROBLEMES DE CONDUCTION THERMIQUE DANS DES MILIEUX ANISOTROPES

Résumé—Cet article comprend deux parties. La premiére présente une courte étude des fonctions fonda-
mentales de Green associée a la conduction thermique dans des milieux isotropes et anisotropes. Puis au
moyen de ces fonctions et des formules de Green, les équations aux dérivées partielles sont transformées
en équations intégrales. En seconde partie, ces équations intégrales sont résolues pour trois problémes
spécifiques en régimes permanents et transitoires. Les résultats comparés aux solutions exactes sont en
bon accord sauf aux trés petites valeurs du temps. Les effets de discontinuité des conditions de surface
et des limites sont discutés de tagon détaillée. On trouve que les effets de I'anisotropie et la facilité de la
méthode dépendent surtout des coefficients de conductivité qui caractérisent le type des équations aux
dérivées partielles.

GEBRAUCH DER FUNDAMENTALEN GREEN’SCHEN FUNKTION FUR DIE
LOSUNG VON WARMELEITUNGSPROBLEMEN IN ANISOTROPEN MEDIEN
Zusammenfassung—Diese Arbeit besteht aus zwei Teilen. Der erste Teil enthilt eine kurze Studie iiber die

fundamentalen Green’schen Funktionen im Hinblick auf Wiarmeleitung in anisotropen Medien. Dann
werden mit Hilfe dieser Funktionen und der Green’schen Formel Differentialgleichungen in Integral-

gleichungen transfomiert.

Im zweiten Teil werden diese Integralgleichungen fiir drei spezifische Probleme stationédrer und insta-
tiondrer Art gelost. Die Ergebnisse werden dann mit den exakten Ldsungen verglichen. Sie stimmen
auBer fiir kleine Zeiten gut iiberein. Diskontinuititseffekte der Oberflichenbedingungen und der Rand-
bedingungen werden im Detail diskutiert. Die anisotropen Effekte und die Vorteile der Methode hingen
ab von der Determinante der Wirmeleitungskoeffizienten, die den Typ der Differentialgleichung

charakterisiert.

UCIIOJIb3OBAHUE ®YHIAMEHTAJBHBIX OYHKIUNU 'PUHA JJIA
PENIEHUA 3AJAY TEHINJONPOBOJHOCTI B AHU3SOTPOIIHBLIX CPEJAX

Anmmoraima—Cratba cocrouT u3 gByx uvacreii. [lepBas mnpegcraBiseT co0oi KpaTKoe
ucciaenoBanye QYyHIaMeHTAIRHEX QYHKNNK ["pHHA B TeOpHH TEMIOMPOBOJHOCTH JJIA AHIU30-
TponubY 1 MBOTPOIHKIX Cpeil. 3aTeM ¢ [TOMOIIBI 3TiX GyHxuwmit 1 popmyn Ppuna nuddepen-
UUBIIIbHbIE YDaBHEHHA HpeoOpasyloTcA B HHTerpalbHble. Bo BTOpoif 4acTH ATH HHTErpajbHble

YPaBHEHNA DPemanTCA AJA TpeX YacTHBIX 3aga4 B CTAUHOHAPDHOM U

HeCTAUOHAPHOM

cocToAaHuAX. CpaBHeHNe NOJYYEHHBLIX Pe3yJbTATOB ¢ pe3yJbTaTaMli TOUYHBIX pelleHuii

MIOKA3BEIBAET XOpoIllee COOTBETCTBUE, 32 NCKIIOUEHVEM OYeHb HeGOJIBIINX 3HAYeHUll BpeMeHHU.

OueHpb T0APOGHO 00Cy:KIaeTCA BIHAHNE PABPLIBHOCTH YCJIOBUIl HA MOBEPXHOCTH M IPAHMLIAX.

Haitmeno, 4ro BAMAHME aHM30TPOIIHOCTH M NPOCTOTA METOIA 3aBHCAT, B OCHOBHOM, OT

onmpemenuTeaa KoaHGUINEHTOB TEIJIONPOBOJHOCTH, XapaKTepuaviomero tin puddepen-
IITAIBHEIX YPaBHEHHI .



