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Abstract-This paper is composed of two parts. The first part presents a short study on the fundamental 
Green’s functions associated with heat conduction in anisotropic and isotropic media. Then by means of 
these functions and Green’s formula, differential equations are transformed into integral equations. In 
the second part, these integral equations are solved for three specific problems in steady and transient 
states. The results are then compared with those of exact solutions and are found in good agreement, 
except for very small values of time. Effects of discontinuities of surface conditions and of boundaries are 
discussed in great detail. Anisotropic effects and the facility of the method are found to depend mostly on 

the determinant of conductivity coefficients which characterizes the type of differential equations. 

NOMENCLATURE 

c* specific heat; 
h* heat transfer coefficient ; 

h, h*L*/k,*, dimensionless heat trans- 
fer coefficient; 

k;, conductivity coefficients; 

k;, reference conductivity; 

kij, kc/k& dimensionless conductivity 
tensor: 

kij 3 dimensionless resistivity tensor; 
L* 

N: 

reference length; 
number of spatial coordinates; 

a*, outward drawn normal to surface; 

n, n*fL*; 

Q*, rate of heat generation per unit 
volume; 

QT Q*L*2/k; Td” ; 
* 

4 Y heat flux: 

43 q*L*/k,* T,*; 

T*, temperature; 
To*, reference temperature: 
IT; T*/T; ; 
t* , time : 

t This study was supported in part by National Science 
Foundation Grant No. GK-23688. 

Subscripts 

s, 
o, 

Superscript 
* 

INTRODUCTION 

ANISOTROPIC media can occur in nature, such 
as woods, crystals and sedimentary rocks, and 
can also be produced artificially, such as lami- 
nated and fiber-reinforced construction and 
electronic materials, cables, cylinders, and tubes. 
Because of the rapid increase of their industrial 
use in recent years, the understanding of heat 
conduction in this type of material is of great 
importance. However, experimentally, it is diffr- 
cult to make accurate measurements, and ana- 
lytically, it is difficult to solve the differential 
equations. 

t*k;/p*c*L*2; 

rectangular coordinates; 
y = y*fL*, 2 = z*lL*; 

density; 
determinant, or matrix. 

pertaining to surface; 
reference quantities. 

pertaining to physical quantities. 
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This paper is concerned with the use of 
fundamental Green’s functions for the solution 
of problems of heat conduction in anisotropic 
and isotropic media. This method is well known 
in classical potential theory [l-3] and in theories 
of integral and partial differential equations 
[4-6] for investigating the existence and unique- 
ness of the solution of differential equations of 
parabolic and elliptic types. 

The practical use of the classical, fundamental 
Green’s functions together with the Green’s 
second formula for the numerical solution of 
Laplace equation was probably first reported 
by Jawson [7]. By an approximate numerical 
technique, good results were reported by Sym 
[8] for a number of two”dimensiona1 problems. 
Most recently, Rizzo and Shippy [9] solved the 
problem ofheat conduction in an infinite cylinder 
of an isotropic medium by first applying the 
Laplace transformation and using the above 
method to solve the auxiliary equation. The 
numerical results were then inverted to yield 
the numerical solution of the original heat 
equation. Calculated data, however, are very 
limited. Since a circular contour is uniformly 
smooth, it is difficult to examine the accuracy 
of the method of solution. Shaw [lo] investi- 
gated the heat conduction in a circular sector of 
an isotropic medium by the direct use of the 
classical fundamental Green’s function but did 
not mention how good is the method for small 
values of time. 

In general, it is difficult to obtain analytical 
solutions of problems of heat conduction in 
anisotropic media. Reported results have been, 
therefore, restricted to orthotropic cases, such 
as Giedt and Hornbaker [ 1 I] Touryan [ 121 and 
Chao [I13]. Padovan [14] considered the heat 
conduction in a thin cylindricai shell of aniso- 
tropic media through the solution of an approxi- 
mately formulated differential equation. One 
way of dealing with the anisotropic case is to 
__~. 

* These functions are aiso called fundamental solutions. 
principal solutions, source functions. singular functions, or 
Green’s functions in an infinite domain in texts of mathe- 
matics. 

transform the differential equation into the 
canonical form by changing the spatial co- 
ordinates. However, after the transformation, 
the domain will be deformed and rotated and 
surface conditions will become, in general, more 
complicated than original ones. 

Since the purpose of using fundamental 
Green’s functions for the solution of heat con- 
duction problems in the present study is dif- 
ferent from that in theory of integral equations. 
a short study on their basic properties is 
given in the beginning of this paper. By means 
of these properties and the Green’s second 
formula, the heat conduction problems are then 
formulated in integral equations. These integral 
equations are particularly suitable for inverse 
problems which will be defined later. To illustrate 
the method and to investigate singularity and 
anisotropic effects, three systems with and with- 
out corners and with and without ~ontinuoL?s 
boundary conditions are investigated in detail : 
a square prism, a circular cylinder and a hollow 
eccentric cylinder. 

~ND‘4MENTAL EQUATIONS AND 
ASSUMPTIONS 

Consider an anisotropic medium in domain 
IR bounded by surface S which may consist of 
n segments each being sufficiently smooth (in 
the sense of Liapunov [2], pp. l-6). Physical and 
thermal properties of the medium are assumed 
constant. The heat conduction in the medium 
can then be formulated in general orthogonal 
curvilinear coordinates as follows: 

in 52 for t > 0, where 

are the components of heat flux, ti the general 
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curvilinear orthogonal coordinates, hi the scale 
factors, and other notations are defined in the 
Nomenclature. The determinant of the con- 
ductivity coefficients, 1 k.,,] is assumed positive 
and definite, so that (1) is of the parabolic type 
and becomes elliptic type in steady state. In 
rectangular coordinates, (1) becomes especially 
simple and for this reason we shall use this 
coordinate system in the following presentation, 
unless stated otherwise. 
quantities defined in 
takes the form, 

rv 

aT c ST 

at = L IJ axiaxj 
Ic.. Lx- + Q(x,) 

Using the dimensionless 
the Nomenclature, (1) 

(3) 

i.j= 1 

in Q for t > 0, where xP denotes the coordinates 
of any point in Q, and N the number of spatial 
dimensions. The boundary conditions on T 

may be written in the form 

T = F(xJ in 8, for t = 0 (4) 

aT 
an+ + h(xs, t)T = f(xs, t) on S, for t > 0 (5) 

where 

3 
a -= 

an+ c k,, cos (n, xi) 4 (6) 
.J 

i.j= 1 

xs represents points on S, h and f are defined 
and continuous functions of xs and t, cos (n, xi) 
are the direction cosines of the normal n to 
surface S, and the initial condition F(.xJ is a 
uniformly continuous function, or satisfying 
Holder condition (see [3], pp. 7-9). In (5), 
either kij or h may be zero so that surface 
conditions of Dirichlet and Neumann types 
are included. The functions h and f may also 
depend on T 

For steady state, (3) takes the form 

IV 

c k.. a2T - = Q(x,). 
1~ axiaxi (7) 

With the boundary condition remains in the 
same form as (5) except that h and f are now 
independent oft. 

It is to be noted from (1) and (2) that the prob- 
lem of heat conduction in anisotropic media is 
three-dimensional, since, even though T may 
depend only on two spatial coordinates, the 
heat flux may be in three directions. 

In the above formulation, the boundary con- 
ditions are assumed known while the tem- 
perature distributions in Sz for t > 0 are sought. 
This class of problems may be called the direct 
problem. Inversely, if the temperature history in 
s2, but not on S, is known, while the rate of heat 
generation, initial temperature, surface tem- 
peratures and surface heat fluxes are to be found, 
then the problem may be referred to as an 
inverse problem. It is known that an inverse 
problem is more difficult to solve than the direct 
one [15, 161. 

FUNDAMENTAL GREEN’S FUNCTIONS 

Let G,(x,, t 1 xi, t’) and G,(x,I xi) denote the 
fundamental Green’s functions associated, re- 
spectively, with (3) and (7) for heat conduction 
in anisotropic media; and gN(xi, t Ix:, t’) and 
g,(x, 1 xi) those associated with heat conduction 
in isotropic media. To unify the presentation of 
these functions and to have them exhibit the 
same characters, we define 

gN(xi, t 1 xi, t’) = 
1 

k[4n(t - t’)lNi2 
e - r2/4(t - t’) 

(8) 

where 

N 

and 

1 
9 ‘= _ 

k c 
(Xi - xi)’ (9) 

i=l 

g3(xiIxI) = -&, g2(xiIx:) = - &In’ (IO) 

where 

r2 = 5 (xi - x:)‘, (11) 
i,j=l i=l 
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The r’s defined in (9) and (11) may be called 
geodesic distances. It is easy to see that g,&, 
t / xi, t’) becomes singular at xi = -u: and t = t’ 
and g,,,& 1 xj) at xi = .x:. These points are called 
poles. It can be readily verified by direct 
substitution that g,& t/x:, t’) satisfies 

. 

k c a2g,v 
ax; = 0 for xi # xi, t # t’ 

i=l 

gN(Xi, t 1 x;, t’ = t) = 0 

and gly(xi / xi) satisfies 

(12) 

N 

c !c@ = 0 
a.\; 

for y. # x: ” I I‘ (131 

Similarly,i=C.!,&ci, t 1 xi, t’) and G,(x,] xi) are to 
satisfy, respectively, 

N 

c 

k,. d2G,v “, - --=0 forxi#?cj,t#t’ 
lJ l?XiCYXj dt 

i,j= 1 

G,(x,, t 1 x;, t’ = t) = 0 (14) 

and 

N 

c 

k 
a2G 

..N = 0 
‘J a.+ j 

for xi # xi. (1.3 

i,j= 1 

These can be achieved, if we write, in view of (8) 
and (10) 

G,(x, tl x;, t’) = 
Jkf.il3 

L4nft _ t,JlN,2 e-R2’4”-r’) (16) 

where jk’jj is the inverse matrix to the matrix 
1 kijl and the geodesic distance R is defined by 

RZ = k”(xi - x;)(xj - ix;) (17) 
i,j=l 

and 

G&/X;) = !$, 

G,(x,Ix:) = - qln R. 

(18) 

(19) 

We now examine some basic properties of the 
fundamental Green’s functions which will be 
used for isolating poles. For xi -+ xi, it can be 
easily shown by taking the limit that 

lim i g,(x, tj .yi, t’) dt’ = gN(xiI $1 (20) 
xi-+x; 0 

lim j G,(x, t 1 xi, t’) dt’ = G&C, / xi). (21) 
xi-x; 0 

Let c be the radius of a small spherical surface 
for N = 3, or of a small circle for N = 2, enclos- 
ing the point xi in domain 52, and let SE be the 
small surface. It can be easily shown that, for 
either steady or unsteady state, 

lim 1 G, dSE = lim 1 g,v dSe = 0 
Ed0 JC E’O SE 

and that 

(22) 

= lim 
E-+0 s 

$ng& 1 x;) dS, = - 1 

1 

= lim dt’ 
S J 

; g&, t 1 xi, t’) dSc = - 1. (23) 
S-b0 

0 S, 

If the pole arises as X, -+ ~1, we may isolate it 
by drawing a small hemispherical surface for 
N = 3 or a semi-circle for N = 2 of radius c 
and center _ys, and we can obtain 

lim -E 
J 

G,~.y&)dS, 
&-'O i?n+ 

se 

= lim 
s 

?- g,C+;) dSC 
E-+0 sc 6% 
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f 

= lim dt’ 
E-0 s s 

$ GN(xs> t I+‘) dS, 

0 S. 

f 

= lim dt’ 
s s 

g gN(xs, ~1x6, t’) dSE = -$. (24) 
E--t0 0 s, 

INTEGRAL EQUATIONS 

We now wish to transform the differential 
equations (3) and (7) into integral equations by 
means of the fundamental Green’s functions 
and Green’s second formula. 

Consider first the steady case. If L denotes 
the linear differential operator of (7) and L 
is its adjoint of (15), both .taken with respect 
to x; 

L[T(x;)] = - Q(x;), LIG,(xilx;)] = 0 

for xi # xi (25) 

then Green’s second formula takes the form 

s 
v?v~m - w%1w 

R 

= G,(XiIX:) $ ‘(Xi) 
s 

- T(x;) $ G,(xi Ix;, 1 dS(x:). (26) 
Substituting (25) into (26), isolating the pole at 
xi = xi by a small sphere for N = 3, or a small 
circle for N = 2, of radius E and taking the 
limit c -+ 0, we obtain 

T(xi) = Q(x;) G,(xiIx;) dO(x;) 

+ S[ G,JXi(X:) $ ‘(Xi) 
s 

- T(x:) T$ G,(x,I xi) 1 dS(x;). (27) 

For the unsteady state, we can obtain by the 
same way 

t 

7-(x, t) = 
s s 

-dt’ Q(x;, t’) G,(x, t[x;, t’) d&2(x;) 

0 R 

+ 
s 

F(x;) G,(x,, tlx;, 0) dSd(x;) 

R 
* 

G,(xi, tlx;, t’) $ T-(x;, t’) 

0 S 

- T(x:, t’) & G,&, tlx:, 0 
1 

dS(x:). (28) 

For isotropic media, T(xJ and T(x, t) are 
given by equations in the same forms of (27) and 
(28) with G, replaced by gN and a/an+ by a/& 

From (27) and (28), it is seen that, if the 
boundary values, (aT/an’), and 7”, are known, 
then the temperature distribution can be ob- 
tained by simply numerical integration. To 
evaluate these boundary values, however, we 
cannot set xi = xs in these equations, because 
of the presence of poles at xs = xi. Evaluating 
the singularity at xs = xl and using (24), we 
obtain 

+7-(x,) = 
s 

Q(x;) G,(x,Ix;) d@x;) 

R 

+ G,(xs 1-y:) -$ Ux:) 
S 

- W:) $ G,(xslx:) 
1 

dS(x:) (29) 

f 

$T(xs, t) = 
s s 

dt’ Q(x;, t’) GJx,, t(x;, t’) d@x;) 

0 R 

+ 

s 
F(x;) GN(xs, tlx;, 0) dS2(x;) 

R 
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[ 
G,&’ t Ix:, t’) 

ii 

&+ 
T(x;, t’) 

- T(x:, t’) & GN(xs, tlx;, t’) 1 dS($). (30) 

The boundary-value equations (29) for steady 
state or (30) for unsteady state together with the 
prescribed surface conditions (5) are sufficient 
to determine the unknown boundary values, 
(i3T/c?n+)S and (T),. 

Note that the volume integrals in (29) and 
(30) are known functions, and that, if the problem 
is three-dimensional in space, the boundary 
value equations are two-dimensional. Thus, 
the numerical solution of the boundary value 
equations requires less effort than the numerical 
solution of the original differential equation. 

We now consider an inverse problem in 
domain 52 bounded by a surface of n segments. 
If temperatures at any (n + 2) points in Sz are 
known, and we wish to find the temperature 
and heat flux at each surface segment, the rate 
of heat generation and the initial temperature, 
which are known only as uniformly distributed, 
then we have (n + 2) equations of (28) and n 

equations of (30). These (2n + 2) equations are 
sufficient to determine the (2n + 2) unknowns. 
Thus, the integral-equation method is also a 
powerful one for the solution of inverse problems 
in anisotropic as well as in isotropic media. For 
instance, the inverse problems that were in- 
vestigated in [16] can be readily written down 
in integral equations in the forms of (28) and 
(30) with G, replaced by gM. 

NUMERICAL SOLUTIONS OF SOME 
TWO-DIMENSIONAL PROBLEMS 

As a stringent test of the method of solution, 
we apply (27H30) to three specific problems 
in regular domains: (I) a long square prism, (II) 
a long circular cylinder and (III) a hollow 
eccentric cylinder. We assume that the surface 
condition is independent of the length co- 
ordinate, so that the temperature will depend 
only on two spatial variables. To facilitate the 

examination of the accuracy of the numerical 
results, we consider only surface conditions of 
Dirichlet type for which analytical solutions of 
problem (II) can be easily found. When an 
exact solution cannot be readily obtained, we 
shall specialize the integral equations to the 
isotropic case and compare the numerical 
results with those of the exact solution. For 
simplicity. we assume that heat generation is 
absent and that the medium is homogeneous 
in rectangular coordinates. It is to be noted that 
an anisotropic medium which is homogeneous 
in one coordinate system becomes hetero- 
geneous in other coordinate systems. Suppose 
that the boundary conditions are, for the steady 
state, 

T=f on S 

and, for the transient state, 

(31) 

T=f on S for t > 0 
(32) 

T=O in 52 for f = 0. 

In view of the properties of fundamental 
Green’s functions as indicated earlier, we may 
assume that (dT/&+)S and (T,, change very 
slowly in comparison with (G)s and (8G/8nfJ5, 
respectively. In the numerical solution of the 
boundary value equations, we divide the contour 
S into N elements. Let i = 1,2.. . N denote the 
primary nodal points and j = 1,2.. . N the 
secondary nodal points. Then the boundary 
value equations (29) for steady problems can 
be written in the form 

IV 

T(Xsi> Y,i) = 2 
cc 1 

s Aij an+ 

j=l 
sj 

N 

-2 
c 

T(xsj, Y,) ‘ij (33) 

j= 1 

where 
Aij = Jj G(xsi) YsilX:, Y:) dS(x:, Y:) (34) 

Bij = 
s 

$ G(+ Y&;Y;) dS(x;, Yj) (35) 

Asj 
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and G is given by (19). Using matrix notation, 
(33) can be written as 

()I] + 21B()(T( - 2jA()Tn+l = 0 (36) 

where IT\ is the column matrix of elements 
T(xSj, y,,): 1 T,, I that of elements aT(xSj, ySj)/8n+ ; 
\A\ and IBI are square matrices of elements 
Aij and Bij respectively; and 111 is the identity 
matrix. 

The boundary-value equation (30) can be 
similarly written in algebraic equations. To 
save computer memory, the integration with 
respect to time may be performed stepwise, i.e. 
T(xSi, ySj, t,) is evaluated from T(xSi, ySi, t,,,_ 1) 
where m = 1, 2, 3, . . . denote the nodal points 
of t. 

N 

N 

-2 
c 

(T)S,B;j + 25 (37) 

j=l 

where 

Fi = 1 T(x’> _V’, t,_ 1) G(X,i, Ysiy t,lx’, Y’T tm- 1) 
R 

x dQ(x’, y’) (38) 

AIj = *r” dt’ lj G(Xsi) Ysi’ t,(X:, Y:, t’) 
fm-1 

x dS(x;, Y;) (39) 

Bij = dt' $ s s G(Xsi) Ysi, tm IX:, Y:, t’) 
tm- I Asj 

x dS(x:, Y:, 

and G is given by (16) with N = 2. Note that 
T(x, y, t,,,_ 1) = 0 for m = 1. The integration 
with respect to time for Al and Bij can be 
performed so that 

A:j =~S ‘i[4(t~ Ri~_~~d~(Xl_Y:) (40) 
Asj 

Asj 

RsZ 
4(t, - rm_ 1) 1 dS(x;> Y:) (41) 

where Ei(z) is the exponential integral and 

Rf = k’ l(xsi - x;)~ + 2k”(xSi - xl) 

’ (Y,i - Y:) + k22(Ysi - Y:)’ 

Ds = cos(n,x~){kl,[kl’(xsi - xi) 

+ k12(ysi - y;)] + kl,[k’2(xsi - xi, 

+ k22(ysi - y:)]} + cos (n, y;){k12 

x [k”(xsi - XL) + k”(ysi - y;)] 

+ k,,[k’2(xsi - xi) + k2’(ysi - y:)]}. 

Using matrix notation, (37) can be written in 
the same form as (36) 

(111 + 21B’I)lTI - 21A’I\T,+I = 21FI. (42) 

The matrix (36) for the steady problem, as 
well as the matrix (42) for the transient problem, 
are solved together with the surface conditions: 

T(0, y) = T(1, y) = T(x, 0) = 0 

T(x, 1) = sin 71x 
(43) 

for the square contour, and 

m@ = 
i  

sin8 0<8<7r 
o 

rc<e<2n (44) 

or 

T(1,e)=a+bcoseO<e<27t (45) 

for the circular contour, where a and b are 
constants. For the hollow cylinder, uniform 
and constant temperatures are assumed at the 
inner and outer surfaces. For the transient 
state, the above surface conditions are assumed 
to hold for t > 0. 

In Figs. l-3 some calculated results of tem- 
perature distributions in steady and transient 
states are shown for the three systems indicated 
above with surface-condition (44) for the circular 
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_--- f=cu (Isotropic) 
- ,+=a, 
-..- fzOO4 

-.- , =0,08 

0.0 0.2 04 06 0.8 I.0 

x 

FIG. 1. Temperature distributions in a square, anisotropic 
medium. k, , = 1. klz = 0.5. kz2 = 1.2. 

_.-.- f = O-04 
_--- ,‘=0.16 

/ = a, 

Isotropic 

FIG. 2. Temperature distributions in a circular, anisotropic 
medium, k, , = 1, k,, = 0.5, k,, = 1.2. 

I.0 

0.8 

J 

0.6 

0.4 

k,, k,2 %2 

-..-..- I.0 0.5 08 

-.-.- I.0 0.3 0.8 
---- I.0 0.1 0.8 

I.0 0.0 I,0 (isotropic) 

“-..-.._,, 
--.-._._:~~ -------___ 

r = 0.8 
---“--‘.-.. _ ._.-. _-._.zy.\ 

T = 0.6 

-1, _ ___--- -7 - 
T = 0.4 

.;_._.-.-.- ((.. 
. . . _.._..-..I’ 

T = 0.2 

0.0 I I I I ! I I 
0 Tr/2 Tr 3lT/2 2T 

8 

FIG. 3. Isotherms in anisotropic and isotropic media for various values of k, *. 
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x 

FIG. 4. Heat flux vectors in a square, anisotropic medium in 
steady state, k, 1 = 1, k,, = 03, kZ2 = 1.2. 

cylinder. Distributions of steady heat flux 
vectors projected in ?cy-plane are shown in 
Figs. 4 and 5. Distributions of heat fluxes 
projected to the normal of contours are shown 
in Figs. 6 and 7. Some temperature distributions 
along a closed path parallel with the square 
contour are depicted in Fig. 8. The effects of 
anisotropy to temperature distributions and 
heat fluxes are clearly shown in these figures. 

4.0 - 

-6.0~ 
C 

Isotropic case 

* k,, = I.0 , k,,= 0.5 , kzz= 1.2 

FIG. 5. Heat flux vectors in a circular, anisotropic medium 
in steady state. 

The most significant quantity to characterize 
the anisotropy is the determinant of the con- 
ductivity coefficients, i.e. I,$.] = k, ,k,, - ki,. 
The smaller the value of 1 k..f, the more asym- 
metric are the temperature telds and heat flux % 

_“/A 
¶hz7zh.._. 

N&& 
I’ c \ /I 

k,, =I.O, k,, zo.5, k22=l.2 ij I 

f i m (isotropic) y;LJ ’ 

I.) 
_____ 

-t=al 
-.- , zO.04 
-..- f 5 0.08 

I I I I I,, I I I III I I / III I I 1 1 

).I 0.3 0.5 0.7 09 0.1 0.3 0.5 0.7 0.9 0.9 07 0.5 0.3 0.1 0.9 0.7 05 0.3 0.1 

x I (y=O) Y. (x=1) x , (y=l) Y, (-0) 

FIG. 6. Normal heat flux at square boundary. 



1914 Y. P. CHANG, C. S. KANG and DAVID J. CHEN 

20 1 I I I I I 

k,, = 1.0, k,‘12’0.5, k*n= I.2 

-..-..- t = 0.07 
-.-.- f = 0.16 

f’cc 

t = 03 (isotropic) 

-Tr/2 0 Tr/2 TT 3T1/2 

8 

FIG. 7. Normal heat flux at circular boundary. 

k,, =I.O, klz =0.5, kz2=1\2 

---- t =m(lsotroplc) 
- -t=m 

_.- f-0.06 
-..- t = 0.08 

07 

FIG. 8. Temperature distribution along a closed path. 

vectors. Since the criterion lkijl > 0 determines 
the type of the differential equations, parabolic 
for transient problems and elliptic for the 
steady problems, therefore, the smaller the value 
of Jk,,], the more difficult is the numerical calcu- 
lation. From Fig. 4, it is clearly seen that heat 
flows out from the surface y = 1 near edge (l,l). 
For the circular domain, the outflow of heat 
occurs also near the point (1, n) although it 
cannot be seen clearly from Fig. 5. Were the 
medium isotropic, inflow of heat would take 
place in these locations. 

Calculated temperature distributions in steady 
state for the circular domain of anisotropic 
media with surface condition (45) is found 
identical with that of isotropic media for all 
values of k,,, k,,, k,,, a and b. This surprising 
result will be discussed later. 

DISCUSSIONS 

We now wish to examine the accuracy of the 
calculated results as shown in Figs. 1-8 for 
anisotropic media. Naturally, the simplest way 
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is to compare the numerical results with those 
obtained by analytical means. Although it 
is not difficult to obtain analytical solutions 
of some of these problems, it is sufficient for the 
present purpose to consider only one case 
whose analytical solution can be readily written 
down. 

For heat conduction in the circular cylinder, 
we consider the steady problem with surface 
condition (45). It is readily seen that the expres- 
sion 

T(r,0) = a + brcosf3 (46) 

where (r, 0) are the polar coordinates, satisfies 
the boundary condition (45) and the differential 
equations expressed in rectangular coordinates 
for anisotropic as well as isotropic media. 
Since our numeral results from the integral 
equations have shown this identity, we can, 
therefore, conclude that the method of our 
numerical solution yields excellent results, for 
the circular cylinder with the continuous surface 
condition (45). 

Table 1. Comparison between exact (upper figures) and 
numerical (lower figures) solutions for temperature dis- 
tribution in a circular, isotropic medium with boundary 

condition (47) 

To test results of other cases, we specialize 
(36) and (42) to those of isotropic media and 
results thus calculated are plotted in Figs. 1-8. 
In steady state, good agreement is obtained for 
the circular cylinder with surface condition 
(44) or (45). However, when the discontinuous 
surface condition 

qi, e) = I i o<e<7c 
0 71<e<271 

(47) 

is used, appreciable but tolerable errors are 
found near the points of discontinuity (i.e. 
8 = 0, n), as can be seen from Table 1. For the 
square prism, a maximum error of 0.3 per cent 
is found near the corners as shown in Table 2. 
In transient state, for large times, a maximum 
error of about 0.3 per cent are also found around 
the points (1,0) and (1, n) for the circular contour 
with surface condition (47) and around the four 
corners of the square contour. For t = OQO5 
error as large as 10 per cent in the temperature 
field are found for both the square and circular 
contours. The error decreases to about 1 per cent 
for t = 0.02 and becomes negligible for t > 0.05. 
Unfortunately, the large errors for small t 
cannot be reduced by taking smaller Aht, as was 
discussed in [ 15,161. An improved version of 
(42) was suggested in [16]. 

To understand the errors near the corners 
of the square contour and near the discontinuous 
point of the surface condition (47) on the circular 
contour, we have to go back to the theory of 
integral equations. When surface S is composed 
of a number of smooth segments, the corners 
are singular points. A discontinuity point of 
surface condition is, in effect, also a singular 
point. In obtaining the integral equations, we 
have tacitly excluded corners and assumed that 
the integral equation is valid for the truncated 
region. This is permissible in domain 0 only. 
For a corner, the term $ in (24) is to be changed 
to 1 - 0/47t where o is the sdlid angle of the 
corner, but this improves the accuracy only 
slightly. To reduce the error caused by edges 
of the contour, we may use “incomplete” 
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Green’s functions, rather than the fundamental 
Green’s function. When this method is used, 
the error for small t can be reduced to toler- 
able range. An incomplete Green’s function 
is defined as the Green’s function which satisfies 
a number of the boundary conditions but not 
all. To show this, we consider again the square 
prism and, for simplicity, we consider the 
isotropic case. Let gl(x, ylx’, y') be the in- 
complete Green’s function satisfying three homo- 
geneous surface conditions at x = 0, y = 0 and 
x = 1, and g& ylx’, y’) that satisfying only one 
homogeneous surface condition at x = 0. By 
the image method, g1 and gz can be readily 
written down as follows: 

Calculated results by using g1 and g2 are 
shown in Table 2. It is seen that results calculated 
by using g1 are in good agreement with those of 
exact solution, except near the two corners 
(0, 1) and (1, 1) where the maximum error is 
about 0.3 per cent. Calculated results by using 
g2 is better than those obtained by using 
g(x, ylx’, y’) but worse than those obtained by 
using gl. 

The intolerable errors for very small t are 
evidently due to the approximate numerical 
technique. The smaller the time, the larger is 
the temperature slope near discontinuous points 
as shown in Fig. 8. Consequently, the approxima- 
tion of (7),, and (aT/&+ ),, by constant values 

1 
g, (x, y 1 x’, y’) = g(x, y 1 x’, y’) + 471 In 

[(x + x’j2 + (y - y’,“] [(x - x’)z + (y + $)2-j 

(x + xy + (y + ):y 

1 a 

+4n C{ 

In [(x + x’ - 2n)2 + (y - y’,‘] [(x + x’ + 2n)2 + (y - y’)‘] 

[(x + x’ - 2n)Z + (y + y’)2] [(x + x’ + 2rd2 + (y + y’12] n= 1 

. [(x - x’ - 2n)2 + (y + y’,“] [(x - x’ + 2nJ2 + (y + y’,‘] 

[(x - x’ - 2n)2 + (y - y’,‘] [(x - 5’ + 2nj2 + (y - y’)‘] 
(48) 

g2(x, y,x’, y’) = _ L ln (x - x’)2 + (Y - YJ2 
47c (x + x’j2 + (y - y’?’ 

(49) 

Table 2. Comparison between exact and numerical solutions for temperature distribution in a square. isotropic medium: 1st row, 
exact: 2nd row, using g, ; 3rd row. using g,; 4th row, using g 

~_______ 

\ .x 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

I’ 

Temperature gradients 
0.4933 1,432 2,230 2.810 3,115 3.115 2.810 2,230 1.432 0.4933 

1.0 
0.4948 1,436 
0.4948 1,436 
0.4125 1.441 

Temperature distribution 
0.1336 0.3877 
0.1340 

o.95 0.1340 
0.3879 
0.3879 

0.1332 0.3878 

0.0974 0.2826 
0.85 0.0973 0.2824 

00973 0.2824 
0.0968 0.2824 

2,237 2.818 3.124 3.124 2.818 2,237 1,436 0.4948 
2,237 2.818 3.124 3.124 2.818 2.235 1,441 0.4111 
2.236 1.818 3.124 3,124 2.818 2~236 1.441 0.4125 

0.6039 0.7610 08435 0.8435 O-7610 0.6039 
0.604 1 0.7612’ 0.8438 0.8438 0.7612 0.6041 
0.604 1 0.7612 0.8438 0.8438 0.7612 0.604 1 
0.6041 0.7613 0.8439 0.8439 0.7613 0.604 1 

0.4401 0.5546 0.6147 0.6147 0.5546 04401 
0.4400 0.5543 0.6144 0.6144 0.5543 0.4400 
0.4399 0.5543 0.6144 0.6144 0.5543 0.4399 
0.4399 0.5543 0.6145 0.6145 0.5543 0.4399 

0.3877 0.1336 
0.3879 0.1340 
0.3878 0.1332 
0.3878 0.1332 

0.2826 0.0974 
0.2824 0.0973 
0.2824 0.0968 
0.2824 0.0968 
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over small intervals of time and of length is no 
longer a valid simplification. To reduce the error 
caused by the approximate numerical technique, 
we may use the integral equation for the 
potential of a double layer [5]. For this purpose, 
we may consider again the isotropic case. 
Let P(x~, y,, t) denote the potential density on 
the contour S which is defined for t > 0 and is 
zero for t = 0 and which satisfies the Holder 
condition. Then we can seek the solution of 
T(x, y, t) in the form 

t 

T(x, y, t) = & J J dt’ 
/4x:, Y:, t’) 

(t - try 

x ex:(- &)W~~~Y~~ WI 

where p is given by 

* 

$L(xs, Y,, t) = f - & 
J J 

dt’ 
/4x:, Y:, 0 

(t - t’) 

x exp(- ~)dS(x~,yj. (51) 

Equation (51) can be solved by the method of 
iteration with the aid of the spline fit approxima- 
tion. The main drawback of using potentials of 
a double or a single layer is that it will become 
more complicated in dealing with multiply 
connected, internally or externally bounded, 
regions, while (27)-(30) apply for any region. 
In view of the fact that the calculation for very 
small t is also difficult in the numerical solution 
of the original differential equation, we may, 
therefore, accept the present numerical method 
with the aid of the scheme suggested in [16] 
as a useful method for the solution of direct 
as well as inverse problems. 

CONCLUDING REMARKS 

The use of fundamental Green’s functions 
together with the second Green’s formula is a 
useful method for the solution of heat conduc- 

tion problems in anisotropic media. In order to 
maintain reasonable accuracy, the following 
conditions are to be observed: 

The bounding surface is, at least, piece- 
wise smooth without acute corners. 
The surface condition does not have 
abrupt change over each surface segment. 
The determinant of conductivity coef- 
ficients is not too small. 
Whenever the incomplete Green’s function 
can be constructed, it should be used 
instead of the fundamental Green’s func- 
tion. 

There are many advantages of using the 
fundamental Green’s function G,. The numerical 
solution of integral equations requires less 
effort than that of the differential equation, 
This is particularly true for irregular domains 
with complicated boundary conditions. Direct 
and inverse problems can be treated by the same 
way, Since G,(x, tlxi, t’) and G,(x,Ixi) can be 
interpreted as instantaneous and steady heat 
sources in anisotropic media, solutions of a 
great many anisotropic problems, which would 
be very difficult to obtain by other methods, 
can be readily written down in the form of 
definite integrals which can be expressed in 
terms .of tabulated functions for many cases of 
practical importance [ 171. 
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L’UTILISATION DES FONCTIONS FONDAMENTALES DE GREEN POUR LA SOLUTION 

DE PROBLEMES DE CONDUCTION THERMIQUE DANS DES MILIEUX ANISOTROPES 

Rbum&Cet article comprend deux parties. La premiere prtsente une courte ttude des fonctions fonda- 
mentales de Green associte g la conduction thermique dans des milieux isotropes et anisotropes. Puis au 
moyen de ces fonctions et des formules de Green, les tquations aux d&rivCes partielles sont transform&es 
en Cquations intkgrales. En seconde partie, ces equations integrales sont r6solues pour trois probltmes 
spCcifiques en rCgimes permanents et transitoires. Les rtsultats cornparks aux solutions exactes sont en 
bon accord sauf aux tr&s petites valeurs du temps. Les effets de discontinuitt des conditions de surface 
et des limites sont discut&s de faGon dttaillCe. On trouve que les effets de l’anisotropie et la facilitk de la 
mCthode dCpendent surtout des coefficients de conductivitk qui caracterisent le type des Cquations aux 

dCrivCes partielles. 

GEBRAUCH DER FUNDAMENTALEN GREEN’SCHEN FUNKTION FtiR DIE 

LijSUNG VON W;iRMELEITUNGSPROBLEMEN IN ANISOTROPEN MEDIEN 

Zusammenfassung-Dies Arbeit besteht aus zwei Teilen. Der erste Teil enthglt eine kurze Studie iiber die 
fundamentalen Green’schen Funktionen im Hinblick auf Wlrmeleitung in anisotropen Medien. Dann 
werden mit Hilfe dieser Funktionen und der Green’schen Formel Differentialgleichungen in Integral- 
gleichungen transfomiert. 

Im zweiten Teil werden diese Integralgleichungen fiir drei spezifische Probleme stationarer und insta- 
tionlrer Art gel&t. Die Ergebnisse werden dann mit den exakten Liisungen verglichen. Sie stimmen 
aul3er fiir kleine Zeiten gut iiberein. Diskontinuitgtseffekte der Oberfllchenbedingungen und der Rand- 
bedingungen werden im Detail diskutiert. Die anisotropen Effekte und die Vorteile der Methode hlngen 
ab von der Determinante der Wlrmeleitungskoeffizienten, die den Typ der Differentialgleichung 

charakterisiert. 

AHEOT&~HJI--CTaTbA COCTOHT II3 sB)'X YaCTeii. &pBaR IIpe~CT3BnFIeT CO6Ofl KpaTKOe 

HCC.7eAOBaHHe $lJ'H~3MeHTWIbHbIX &H"~Ilti I‘pHHa B TeOpHII TNLiIOtIpOl3O~HOCTM AJIH aHII30- 

TPOIlHbId M H30TpOIIHbIX CpeA. 33TeM C IlOMOIIJbI0 3TIlX ,$)‘HKIJ&Ifi II (POpMY” rpHH3 ~IIdj@epW 

IWIbIJIbHbIe J-paBHeHHJJ IIpeO6p33J’IOTCfi B HHTerpWIbHbIe. Bo BTOPOii VaCTLI 3TI2 MHTeI-PaJIbHLIe 

ypaBHeHI?H pe”IaI0TCfI &WI TpeX YaCTHbIX 3?aAaY B CTaqEIOHapHOM II HWT3I(nOHapHOM 

COCTORHIUIX. CpaBHeHIW IIOJIJ’YeHHbIX pe3j’JIbTaTOB C pe3J’nbTaTaMM TOYHbIX peIIIeHd 

IIOK33bIBaeT XOpOIIIt’e COOTBeTCTBIie, 38 IICKJIIO9eHHeM OYeHb Ht?6OJIbIIIHX 3HaYeHGII-i BpeMeHIl. 

OYeHb IIOAp06HO 06CJ’FKfiaeTCFI BJIIIRHHe p33pbIBHOCTll J’CJIOBkIfi Ha IIOBepXHOCTM II rpaHIWxX. 

HatineHo, YTO BJIHRHIle 3HH30TPOIIHOCTII II IIpOCTOTa MeTOza 3BBIICRT, IS OCHOBHOM, OT 

onpeAe.nlfTenfl K~~@@H~WHTOR Ten,.nonpoBo~HocTIi. xapaKTepHayIomer0 TIfn n@@epeH- 
IIIIWIbHbIX SpaBHeHPiir. 


